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Abstract

Identifying the binding targets of small molecules is an essential process in
drug discovery and development. The two conventional approaches include high
throughput screening (HTS) and computational structural docking. HTS suffers
from its expensive cost and time-consuming procedure, while the computational
methods reply on simplifying assumptions that often leads to less accurate results.
In this project, we developed machine learning based approaches to efficiently
predict drug targets using the massive LINCS data. We extracted meaningful
features from the LINCS data and integrated them with information from other
genomic data, and build a random forest based classifier that achieves remarkable
prediction accuracy. Our strategy provide an fast and efficient way of predicting
drug targets, and can naturally serve as a pre-pruning step for the computationally
expensive structural based approaches.

1 INTRODUCTION

A major computational and experimental challenge is mapping small molecules to their protein
targets. To date, most studies have relied on high throughput screening (HTS), i.e., testing millions
of compounds against a single target [2, 9]. While this expensive and time-consuming modality
can sometimes be effective at identifying active compounds in vitro, only a tiny fraction of the
100,000 predicted protein-protein interactions (PPIs), which are the direct or indirect targets of most
drugs, have been disrupted in HTS experiments. More importantly, from the point of view of drug
development, most in vitro assays do not provide any context regarding drug activity in the cell.
Another common strategy is computational structural docking, in which the small molecules are
docked onto multiple positions on the molecular structure of a protein, and the fitness of interaction
are estimated through complex biophysical computations and molecular dynamic simulation [7, 13].
While the computational methods are generally less costly and easier than HTS, to be accurate these
methods require extensive computational time for each pair of drug-protein being tested and thus do
not scale to the large number of possible interactions that needs to be studied. Specifically, it is not
feasible to perform extensive and complete docking for all the genes in human genome.

In this project, we aim to use the Library of Integrated Cellular Signatures (LINCS)1 to predict
the drug targets through machine learning approaches. LINCS currently contains gene expression
profiles following knockdowns (KD) and treatments in multiple cell lines. Our prediction strategy
follows the following key hypothesis of this project: the gene expression pattern of treating cells
with a given drug is similar to that of knocking down the drug targets in the same cell line. The
rationale (depicted in Figure 1) is that most drugs bind to their targets and inhibit the targets’ cellular

1http://www.lincsproject.org/
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Figure 1: The hypothesis of this project: The effect of inhibiting a target by a small molecule is
similar to knocking down the same target with sh-RNA.

functioning. The effect of drug-binding, therefore, should be similar to simply knocking down
the cellular level of that target. For this reason, proteins that show high knockdown correlation
with the drug likely lie on a pathway that is directly affected by the drug and would thus serve as
good candidates for direct targets for the drug. This approach provides a valuable alternative to
in vitro screening. By focusing on the pathways targeted by different drugs and small molecules
using the LINCS data and knockdown gene expression profiles, we should be able to predict a more
biologically relevant set of targets for each small molecule as well as potential off-target interactions.

A key challenge when analyzing these massive datasets is to integrate results across experiments
and cell types and to further integrate the data with additional data sources. Therefore, determining
drug targets from the LINCS data is not trivial. First, the data is noisy and so several false positives
and false negatives can arise in each experiment. Moreover, most drugs are not intended to be active
for most cell types and so it is not even clear if the intended target(s) are active in the cells that are
being profiled. Even when the cell is correct and the results are accurate, several indirect targets may
appear to be affected (for example, those upstream/downstream of the immediate target) making it
hard to determine which of the differentially expressed genes proteins are the direct targets of the
drug. Finally, drugs often act at the protein level and so can have little impact on the direct readouts
(mRNAs) of their targets making it hard to identify such targets using gene expression data.

Rather than directly focusing on genes that are differentially expressed (DE) following drug treat-
ment (which, as mentioned above is not likely to lead to accurate set of targets), our hypothesis
leads to an indirect approach to match small molecules and their protein targets. Specifically, we
examine the set of DE genes following drug treatment and a similar set following knockdown of
a specific protein and compare them in order to identify a target for the molecule. In addition, we
would combine the condition and cell type specific LINCS data with other genomics data (mainly
protein-protein interaction and localization data) to further improve the set of predicted targets across
cells.

The final prediction strategy of this project is based on random forest [8, 12], which is especially
suitable for dealing with missing data. In our case, while we have KD and treatment experiments for
many genes and molecules across several cells, relatively few genes and molecules have been tested
in all cells. Thus, to train a classifier for predicting targets we would need to develop methods that
can handle missing data in the classification process and still yield accurate results.

Our strategy can easily be combined with the computational docking methods. The correct targets
can be enriched to the top 100 genes using our methods, this means that the computational docking
methods only need to focus on these 100 genes instead of all genes in human genome. By focusing
on less genes, we can perform much more extensive docking for each gene and can most likely
obtain a even more enriched list (e.g. top 10), which can easily be tested by molecular biologist
using biological assays.
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2 DATA AND METHODS

2.1 Data Sources

LINCS LINC is an NIH program that generates gene expression profiles across multiple cell lines
and perturbational types at a massive scale. To date, LINCS has generated over 1 billion data points
of gene expression profiles (over 150 gigabytes of data) containing small-molecules and genetic
gain- (cDNA) and loss-of-function (sh-RNA) constructs across multiple cell types.

Specifically, the dataset contains experiments profiling the effects of 20,143 small-molecule com-
pounds (including known drugs and pathway-specific tool compounds). In addition, there are 22,119
genetic constructs for over-expressing genes (gain-of-function) or knocking-down (KD) genes (loss-
of-function). These constructs were designed to affect genes encoding targets of FDA-approved
drugs, drug-target pathway members, and targets associated with disease. These perturbing agents
are tested on 18 different cell types, which were selected from diverse lineages which span es-
tablished cancer cell lines, immortalized (but not transformed) primary cells and both cycling and
quiescent cells.

The gene expression profiles were measured using the L1000 assay2. This is a bead-based assay in
which the raw fluorescence transcriptional responses corresponding to certain cell-perturbagen com-
binations are measured. In order to increase the throughput of profiling, this assay does not directly
measure all of the ˜20,000 genes in the human genome. Instead, it measures a set of 978 so-called
“landmark genes” and the expression values of other genes were computationally imputed from
them. This reduced representation is possible because of the high correlation of gene expression.
The landmark genes are carefully chosen to be minimally redundant and can capture approximately
80% of the information.

The raw data collected from L1000 assay were processed through a 4-stage computational pipeline
which converts raw fluorescence intensity into differential gene expression signatures:

• Level 1: Raw, unprocessed flow cytometry data.

• Level 2: Gene expression values per 1,000 genes after de-convolution.

• Level 3: Gene expression profiles of both directly measured landmark transcripts plus im-
puted genes. Normalized using invariant set scaling followed by quantile normalization.

• Level 4: Signatures with differentially expressed genes computed by robust z-scores for
each profile relative to population control.

All data of all 4 stages are available in LINCS, and we use the level-4 signature values in this project.
The data processing of LINCS was done using l1ktool3.m

ChEMBL ChEMBL is an open large-scale bioactivity database [6]. We retrieved the records of all
FDA-approved drugs using ChEMBL web service API4. These records contain the designed targets
for the drugs and the synonyms and unique chemical ID for them. Using these information, we can
cross reference these drugs in LINCS.

Protein-Protein Interaction BioGRID[3] and HPRD[11] curated set of physical and genetic in-
teractions including interactions, chemical associations, and post-translational modifications from
publications. We retrieve all the records corresponding to protein-protein interactions(PPI) from
these data sources and converted the obtained PPI to adjacency list representation.

Gene Ontology We obtained the cellular localization of genes from the Gene Ontology Consor-
tium [4]. The Gene Ontology (GO) project is a collaborative effort to address the need for consistent

2http://support.lincscloud.org/hc/en-us/sections/200437157-L1000-Assay
3http://code.lincscloud.org/
4https://www.ebi.ac.uk/chembl//ws/home_old
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Localization Assigment
Cell Membrane External
Endosome Internal
Secreted External
Cytoplasm Internal
Nucleus External
Chromosomes Internal
Mitochondria Internal
ER Internal
Lysosome Internal
Golgi Internal
Peroxisome Internal
Ribosome Internal
Microsome Internal
Endomembrane Internal
Cytoskeleton Internal
Centrosome Internal
Vesicle External
Vacuole External
Membrane External
Cell Internal

Table 1: Possible cellular localizations retrieved from GO and their assignment.

descriptions of gene products across databases. The GO database provides web services to query
genes in terms of their associated biological processes, cellular components and molecular functions
in a species-independent manner5. We further assign the locations as either “intracellular” (inside
of cell) and “extracellular” (outside of cell). The detailed assignment can be found in Table 1.

2.2 Naming Conventions and Notations

A target gene is transcribed and translated to protein, which the drugs bind to. Therefore, “target”
in the text may refer to either a gene or a protein depending on the context.

• The LINCS signature values measure the change of genes. In this context, targets refer to
genes.

• Knockdown experiment decrease the expression of target genes and reduce the amount of
target proteins in cell.

• The drug binds to target proteins.

Before we describe the procedure of constructing the validation dataset and features, we first lay out
the symbols and notations used in the later text here.

5http://geneontology.org/page/go-enrichment-analysis
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Symbol Meaning
d Index for a drug
c Index for a cell line
g Index for a gene
ND Total number of drugs
NC Total number of cell lines
Cd The set of cell line indices for drug d
Pd The set of protein target indices for drug d
Gc The set of knockdown gene indices for cell line c
Ndc Number of experiments for applying drug d to cell line c
Ngc Number of experiments for knocking out gene g in cell line c
∆ Drug-response data
Γ Gene-knockdown data
Ψ Control data
Ω Full feature data
Xd Training data derived from drug d
yd Training label derived from drug d
νd Negative (non-target) genes for drug d

Table 2: Symbols and notations used in the project

2.3 Building a Validation Dataset from LINCS

2.3.1 Choosing Small Molecules and Cell Lines

To examine our main hypothesis, we build a validation dataset that includes small molecule and KD
experiments that satisfies the following:

• The cellular target of a small molecule is known a priori.

• A small molecule has been applied to multiple cell lines.

• The knockdown of the target gene are also available for the same cell lines.

Specifically, this validation dataset includes LINCS experiments corresponding to the following
small-molecule response and gene knockdown experiments.

Small molecules Our hypothesis requires that we know the correct targets for each drug a priori
in order to evaluate the predictions from our methods. Therefore, we include only FDA-approved
drugs in the validation dataset because their intended targets were well established and documented.

We retrieved the reported targets and other meta-information of all FDA-approved drugs using the
ChEMBL, and then cross-referenced these drugs in LINCS using their primary product names, syn-
onyms, canonical SMILES strings and standard InChIKey. We have identified 1031 out of around
1300 FDA-approved drugs tested in LINCS.

Cell lines We need to extract signature values of both small molecule and gene knockdown exper-
iments from different cell lines. Our hypothesis requires that a cell line has (1) knockdown experi-
ments for many genes, and (2) the targets of drugs are in the set of knocked-down genes. Guided by
these two requirements, we queried the meta-information of LINCS signatures and selected seven
cell lines to be included in the validation dataset and their information are shown in Table 3.
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Cell line Drug Knockdown Control
A549 188 11947 52
MCF7 180 12031 54
VCAP 175 13225 56
HA1E 172 11968 53
A375 143 11696 58

HCC515 129 7828 52
HT29 96 10185 52

Table 3: Seven Cell lines are included in the validation dataset. The number of drugs, knockdown
genes and control experiment are shown. For a given cell line, we only include drugs that have their
target knockdown experiments available in that cell line.

Not all of the drugs are applied to all the cell lines in LINCS. Therefore, we only include drugs that
have been applied to 4 or more cell lines, and finalized 152 drugs for the validation cell lines (Table
4). There are 29 drugs in the validation dataset that have been applied to all 7 cell lines. We used
these drugs to evaluate the predictive power of individual features, which is further discussed below.

7 Cell lines 6 Cell lines 5 Cell lines 4 Cell lines Total
29 30 42 51 152

Table 4: The number of drugs for combinations of cell lines included in the validation dataset

2.3.2 Extracting Experiments from LINCS

After determining the subsets of small molecules and cell lines, we obtained the associated ex-
periment identifiers known as “distil ID” from LINCS meta-information. We included only the
reproducible distil IDs known as “Gold” IDs.

We then extracted the corresponding signature values from LINCS using the L1000 Analysis Tools
(l1ktools) 6. We chose only to extract the signature values of 978 “landmark” genes, because their
expression were directly measured, and the values of other genes were imputed from the data of
these landmark genes.

Drug-response experiments There exists multiple experiments (distil IDs) correspond-
ing to a combination of drug d and cell line c (applying drug d to cell line c). Denote
the Ndc as the number of experiments for the combination d, c. We extracted a matrix of
signature values of size 978×Ndc (number of landmark genes × number of experiments)
per combination. We next take the median of signature values across different experiments,
and obtain a 987× 1 signature vector per combination. The overall drug-response data ∆,
therefore, is implemented as a MATLAB structure with D = 152 entries, each containing
the following fields.

name: PertIDd (string)

cells: CellsCd
(|Cd| × 1 string array)

signature: ∆d·· (978× |Cd|)

where PertIDd is the unique internal identifier of a small molecule in LINCS. ∆d·· con-
tains the expression values of drug d across Cd different cell lines. The CellsCd

field
contains cell line names corresponding to the column of ∆d··.

Gene knockdown experiments We follow the similar protocol to extract the signature
values of gene knockdown experiments. Denote Ngc as the number of experiments for the
combination of gene g and cell line c (knocking down gene g in cell line c). Then, for each
combination of g and c we extracted signature values of size 978 × Ngc. After taking the
medians across different experiments, we obtain a 978 × 1 vector per combination. The

6https://github.com/cmap/l1ktools
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overall gene knockdown data Γ has C = 7 entries and each entry contains the following
fields:

name: Cellsc (string)

genes: SymbolsGc
(|Gc| × 1 string array)

signature: Γc·· (978× |Gc|)
where Cellsc is the name of a cell indexed by c. Γc·· contains the signature values of
the knockdown of genes in cell line c. The SymbolsGc

field is a subset of gene symbols
corresponding to the column identifiers of Γc·· under the HGNC naming scheme.
Control experiments We also extracted the signatures of control experiments. The sig-
nature values for each cell line were extracted and we obtained a 978×1 vector after taking
the medians. We denote the overall control experiment data as Ψ. Ψ is of size 978 × C
and implemented with the following format:

name: Cellsc (string)

control: Ψ·c (978× 1)

where Ψ·c is the signature column vector for a cell line c.

2.4 Extracting and Integrating Features from Different Data Sources

2.4.1 Correlation feature

The correlation feature, denoted as fcor is constructed as follows:

For each drug d in ∆

• Denote Td as the intersection of gene symbol indices for cells in Cd. i.e.

Td =
⋂

c∈Cd

Gc

• Obtain the knock-down signature values of Td from Γ. Denote this data matrix as ΓCd·Td

which is of size |Cd|×978×|Td|, where for each cell line in Cd there is a signature matrix
of size 978× |Td|.
• Compute the Pearson’s correlation between ∆d·· (978 × |Cd|) and ΓCd·Td

(|Cd| × 978 ×
|Td|). Specifically, for each cell line c ∈ Cd, we compute the correlation between ∆d·c
and Γc·Td

, and obtain a correlation vector of size |Td|. This is the correlation between the
responses of the cells to the drug treatment and their response to the gene KD. Each entry
in this vector is the correlation of 978 landmark genes of the drug d in one cell line (∆d·c)
and a knockdown of gene g in the same cell line (Γc·g). In other words, if we collect these
correlation vectors for all cell lines in Cd and denote the overall correlation feature as fcor
has the following definition:

fcor(d, g, c) = corr (∆d·c,Γc·g) ∀g ∈ Td
The correlation feature for one drug d, i.e. fcor(d, ·, ·), has a dimension of |Td| × |Cd|.

2.4.2 Cell selection feature

The cell selection feature , denoted as fCS , is computed as follows.

• For each drug d in ∆ (∆d··):
– For each cell line c in Cd:
∗ compute the correlation between ∆d·c and Ψ·c

fCS(d, c) = corr (∆d·c,Ψ·c)

In other words, fCS(d, ·) produces a |Cd| × 1 vector, each entry corresponds to the correlation
between the drug-response and control experiments for one cell line in Cd. This feature is used to
determine the relevance of the drug to the cell type being studied.
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2.4.3 PPI correlation score

The “PPI correlation Score”, denoted as fPC is constructed as follows:

For each drug d, we first obtain Td, the intersection of gene symbol indices, as before. Then for each
cell line c in Cd, we sort Td in descending order using the correlation values fcor(d, ·, c), and we
denote the sorted gene symbol indices for cell line c as σc(Td).

We then construct the PPI correlation feature fPC as follows:

• For each knockdown gene g in Td: Obtain the set of neighbor gene symbol indices from
PPI adjacency list, and denote it as Bg .

fPC(d, g, c) =
|Bg ∩ σc(Td)1:100|
|Bg ∩ σc(Td)|+ 50

• fPC feature is of the same dimension as fcor, which is |Td| × |Cd|.

In other words, fPC(d, g, c) reflects the fraction of gene g’s binding partners that is more correlated
with drug d in the context of cell line c. We use 50 as the pseudo-count to penalize hub proteins
which have substantially more neighbors than others.

2.4.4 PPI expression score

We compute two types of PPI expression scores, denoted as fPEmax and fPEavg , as follows:

• For a drug d:

– For each knockdown gene g in Td:
Obtain Ng as above.
∗ For each cell line c, find the set of signature values for the neighbors: ∆d,Ng,c

(size: |Ng| × 1). Then, the two PPI expression scores computed as

fPEmax(d, g, c) = max
(
∆d,Ng,c

)
fPEavg

(d, g, c) = avg
(
∆d,Ng,c

)

2.4.5 Feature data structure

We combined the features for all drugs in a MATLAB structure Ω. Ω has D entries, and each entry
Ω(d) has the following fields:

Name: PertIDd (string)

Targets: Pd (targets for d)

Cells: Cd (|Cd| × 1 string array)

Genes: Td (common genes across Gc)

Correlation: fcor(d, ·, ·) (|Td| × |Cd|)
PPI Correlation: fPC(d, ·, ·) (|Td| × |Cd|)

Max PPI Expression: fPEmax(d, ·, ·) (|Td| × |Cd|)
Avg PPI Expression: fPEavg

(d, ·, ·) (|Td| × |Cd|)
cell selection: fCS(d, ·) (|Cd| × 1)

There are a total ofD = 152 drugs in Ω, and the number of drugs with different |Cd| are summarized
in Table 4.
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2.5 Methods

2.5.1 Criterion of successful classification

Due to the intrinsic noise from the data, we define a successful classification for a drug if any of its
correct targets is enriched into the top K ranked genes, where K can be either 50 or 100.

2.5.2 Single Feature

The evaluation of single features was performed using the drugs that have been applied on all 7 cell
lines. There are 29 of these drugs from Ω. We sort the common genes Td descendingly for a drug d
and a cell line c using an individual feature f(d, ·, c), where f is either fcor or fPC . Denote σd(g, c)
as the ranking of a gene g ∈ Td in the context of cell line c. Then, we define the overall ranking of a
gene σd(g) to be the best ranking across all seven cell lines, i.e. σd(g) = min(σd(g, c)) for c ∈ Cd.

2.5.3 Constructing training dataset

Next, we wish to learn and evaluate classifiers that predict drug target using all features from the
feature dataset Ω, . Therefore, we first construct training data (design matrix X and its associated
labels y) from the feature dataset Ω.

For each drug d in Ω, we select the rows corresponding to the targets in Pd from the other feature
matrices and concatenate them into a row vector. The same cell selection vector is appended to
every row of targets. These rows are assigned with a positive label 1. We then randomly sampled
100 non-target genes (denoted as νd) and construct the row vectors the same way as the target genes,
and these rows are assigned with a negative label 0. In other words, the training matrix and label
vector constructed from a drug d are of the following format.

Xd yd

fcor(d, Pd1, ·) fPC(d, Pd1, ·) fPEmax
(d, Pd1, ·) fPEavg

(d, Pd1, ·) fCS(d, ·)
fcor(d, Pd2, ·) fPC(d, Pd2, ·) fPEmax

(d, Pd2, ·) fPEavg
(d, Pd2, ·) fCS(d, ·)

...
...

...
...

...
fcor(d, Pdm, ·) fPC(d, Pdm, ·) fPEmax

(d, Pdm, ·) fPEavg
(d, Pdm, ·) fCS(d, ·)

fcor(d,νd1, ·) fPC(d,νd1, ·) fPEmax(d,νd1, ·) fPEavg (d,νd1, ·) fCS(d, ·)
fcor(d,νd2, ·) fPC(d,νd2, ·) fPEmax

(d,νd2, ·) fPEavg
(d,νd2, ·) fCS(d, ·)

...
...

...
...

...
fcor(d,νd100, ·) fPC(d,νd100, ·) fPEmax

(d,νd100, ·) fPEavg
(d,νd100, ·) fCS(d, ·)





1
1
...
1
0
0
...
0


where m = |Pd|, which is the total number of targets for drug d. Therefore, the training matrix Xd

for drug d is of size (m+ 100)× 5 |Cd|, and label vector y has length m+ 100.

2.5.4 Logistic Regression and Random Forest

We used MATLAB’s lassoglm package to train a lasso-regularized logistic regression model. We
applied MATLAB’s TreeBagger package for random forest based models. Leave-One-Out Cross
Validation (LOOCV) was performed to evaluate the performance of both methods.

2.5.5 Code Repository

All the relevant code for this project can be found at https://github.com/xiayan/linc_
target_pred.
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3 Results

3.1 Designing Features using the Signature Profiles from LINCS

First, we describe the rationale of each feature extracted from LINCS and other auxiliary genomic
datasets. The detailed process of generating these features are included in Data and Methods.

The correlation feature captures the main hypothesis, i.e., the gene expression pattern of treating
cells with a given drug is similar to that of knocking down the drug targets in the same cell line.
We compute the Pearson’s correlation of the signature values between a drug response and a gene
knockdown experiment in the same cell lines.

The correlation from some cell lines may be more useful than the others since we do not expect
drugs to be effective in all cell lines. The cell selection features are designed capture this cell line
differences. We reason that if a drug has more effect on one cell line, the gene expression pattern
for that drug and cell line combination should be very different than that of the control experiment.
This hypothesis implies that the signature vector of a more effective cell to a drug should have lower
correlation with the control vector.

We also build features that take into account of the protein-protein interaction information. In addi-
tion to having high correlation with the signatures of the target knockdown experiment, we believe
that the signatures of drug-response experiments should also show high correlation with the knock-
down experiments of its target’s binding partners.

PPI expression score is another PPI-related feature that considers the signature values directly.
Specifically, we think that the knockdown of the target can lead to higher changes of the signature
values for that target’s partners. We compute two types of PPI expression scores.

3.2 Predictive Power of Individual Features

We evaluate the predictive power of individual features. This process allows us to confirm that the
features we construct are meaningful, and when combined together, can potentially lead to better
predictions.

The correlation feature captures the main hypothesis of this work. To evaluate it, we rank the genes
by the correlation feature alone across the cell lines, and select the final rankings to be the best
one across all cell lines. From this procedure, it is very possible that multiple genes have the same
ranking (e.g., 7 genes can all have 1 as the final rankings, each for a different cell for the same drug)
and we break ties randomly. We note that the decision of taking the best ranking is consistent with
the assumption that small molecule are not always effective in all of the cell lines. We use the drugs
that have been applied to all 7 cell lines (|Cd| = 7, 29 out of 152 drugs in Ω). This choice allows a
fair comparison, since no drug has missing features.

The correlation feature correctly enriched the targets of 8 drugs to the top 100 which is top 3% (100
out of 3104 genes). The mean ranking of the best ranked targets of all drugs is 800.59 (Table 5). We
compare the performance of correlation feature with a baseline in which the we use random genes
as the targets of drugs and repeated the same evaluation procedure. The random experiment only
classified two drugs correctly, and has the mean ranking of merely 1365.00 which is much worse
than that of using the correlation feature. It is therefore evident from these results that the correlation
feature has significantly better predicative power than random.

The cell selection feature builds on top of the correlation feature and enables us to focus on corre-
lations in relevant cells rather than treating all cell lines equally. After applying a drug to different
cell lines, we expect the relevant cell lines to demonstrate significantly dissimilar gene expression
profiles from those in the untreated state. Therefore, to evaluate the effect of incorporating the cell
selection feature, we perform the following steps:(1) for a given drug d, we determine the most rel-
evant cell line c = argminc fCS(d, c), i.e., the cell line has the lowest correlation with the control
signature profile; (2) use the ranking of that cell line as the final ranking for genes, instead of taking
the best ranking across 7 cell lines. Even though the final ranking for each gene cannot be better
than selecting the best from all 7 cell lines, it is possible that the average ranking decreases because
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there are no tied rankings in this case. The results shows that including the cell selection feature
indeed lead to the decrease of average ranking (776.86), though the number of correctly classified
drugs also decreased to 6. Nonetheless, this procedure is designed to evaluate the predicative power
of cell selection feature, instead of an actual procedure of performing classification. It is clear from
these results that cell selection feature helps to improve the overall performance and it is beneficial
to combine it with other features as we will discuss below.

The PPI correlation feature is another feature that utilizes the correlation between KD and drug
treatment. It represents our hypothesis that the signature profiles of targets’ binding partners also
have high correlation with the drug-response signature profile. The evaluation procedure of the
PPI correlation feature is similar to that of th correlation feature. We rank the genes using their
PPI correlation values and select the best ranking across 7 cell lines as the final ranking for each
gene. The result shows that PPI correlation feature along correctly classifies 10 drugs and the mean
ranking is further decreased to 724.31 (Table 5).

Overall, the evaluation of individual features reveals that the features that we extracted and integrated
from LINCS and the auxiliary datasets have significant predictive powers. This finding motivates us
to use them together in single classification models, such as logistic regression and random forest,
and it most likely will further improve the classification performance.

3.3 Classification using Logistic regression and Random Forest

In our first attempt, we trained a logistic regression model [12] to utilize all the features in classi-
fication. The evaluation is performed using the same 29 drugs that have been applied to all 7 cell
lines. To estimate the performace of the model, we used Leave-One-Out Cross Validation (LOOCV)
for each drug. Specifically, we train a lasso-regularized logistic regression model using the features
from 28 drugs and apply it to compute the probability for each gene being the target given the fea-
tures in the left-out drug. We then rank the genes using the predicted probability and examine the
best ranked target for the held-out drug. Through this process, logistic regression classified 11 out
of 29 drugs successfully (Table 5). Furthermore, logistic regression improves the average ranking
of all drugs to 712.83.

Logistic regression learns a linear decision boundary and assumes that the examples are independent.
This is not generally true in our case since the many drugs target proteins in the common, well-
established signaling pathways [10]. For example, GPCR-targeting drugs represent 30 to 40 percent
of marketed pharmaceuticals. Therefore, in our second attempt, we used random forest which is able
to learn more sophisticated decision boundaries and performs automatic variable selections [5]. We
followed the same LOOCV procedure and trained a random forest regressor with 5000 decision trees
using features from 28 drugs, and it was then applied to all the genes for held-out drug. Applying
random forest regression resulted in much better performance. 16 out of 29 drugs (55%) are now
successfully classified, and the average ranking is improved to 471.45 (Table 5).

These results confirm that including all features leads to better classification and demonstrates the
superior performance of random forest. Coincidentally, random forest is also especially suitable for
dealing with missing features, and this allows us to extend our analysis to all 152 drugs in Ω.

3.4 Extending Random forests to Drugs with Missing Features

The overall goal of this project is to predict the targets of small molecules that most likely have
not been applied to all 7 cell lines, it is highly desirable that our method can handle missing data
(i.e. cells for which experiments were not performed) robustly so that it is applicable to more small
molecules.

To this end, we have developed two methods to deal with different Cd combinations and extended
the random forest model to all the drugs in Ω. In the first method we simply build the random forest
“on-the-fly”. For a given drug i, we iterate through all other drugs in Ω and test if a drug d has a cell
line collection that is compatible with that of drug i. In other words, we test if Ci ⊆ Cd and if so
we extract the features of corresponding cell lines in Ci from Ω(d) and include them in the training
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Drug Random Cor CS PC LR RF
vinorelbine 310 126 1318 128 28 88
dexamethasone 1498 1891 943 284 757 157
dasatinib 2325 1009 222 94 182 532
vincristine 1979 473 386 439 456 37
mycophenolate-mofetil 564 1100 2986 1263 3064 3086
amlodipine 995 1338 1801 2439 3037 650
lovastatin 1712 72 2078 811 1334 55
clobetasol 2194 820 157 21 38 65
calcitriol 2514 1059 221 2938 1299 252
flutamide 919 2604 2806 69 702 647
prednisolone 2382 1439 787 206 257 23
nifedipine 940 1225 1285 1465 3037 2249
vemurafenib 1042 1 1 82 22 2
glibenclamide 29 1415 409 2028 1300 366
digoxin 2376 73 118 1470 732 44
bortezomib 1882 1 2 1 24 5
vinblastine 1612 515 100 56 38 2
digitoxin 573 89 216 430 79 50
losartan 645 489 770 988 735 1931
pitavastatin 1855 1976 1117 1036 1632 373
digoxin 69 521 194 776 208 64
hydrocortisone 303 312 58 72 29 17
paclitaxel 2299 74 47 121 79 19
lovastatin 988 1 1587 735 128 100
irinotecan 1742 1023 236 20 46 160
vincristine 1394 96 17 74 28 9
vinblastine 1359 490 1383 75 35 2
raloxifene 2080 2883 1172 1818 1114 2520
digoxin 1005 102 112 1066 252 167
Mean Ranking 1365.0 800.6 776.9 724.3 712.8 471.4
Top 100 2 8 6 10 11 16

Table 5: Performance of different methods on 29 drugs. Cor: correlation feature; CS: cell selection
feature; PC: PPI correlation feature; LR: logistic regression; RF: random forest
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All 7 Cells 6 Cells 5 Cells 4 Cells

On-the-fly

Top 100 58 13 15 16 14
Top 50 42 10 10 12 10
Top 100 % 38% 45% 50% 38% 27%
Top 50 % 28% 34% 33% 29% 20%
Mean Ranking 767.3

Two-level

Top 100 64 14 15 22 13
Top 50 54 12 14 20 8
Top 100% 42% 48% 50% 52% 25%
Top 50% 36% 41% 47% 48% 16%
Mean Ranking 718.2

Table 6: Performance of two random forest models on all drugs. The number of drugs with targets
ranked in top 100 and top 50 are shown. These total numbers are broken down to different cell line
numbers. The percentage of these successful drugs are also reported.

data. After we include data for all compatible drugs we can use the training data to train and apply a
random forest for the given drug i. We note that for any drug in Ω, there are at least 28 compatible
drugs because 29 drugs have been applied to all 7 cell lines. However, the main disadvantage of this
method is that we need to train separate random forest for every test drug.

In the second method we build the random forest in two steps and we denote it as the “two-level”
random forest. In the first step, we randomly sample 4 cell lines from the total 7 cell lines (denote
as Ci). In the second level, we iterate through all drugs in Ω and if Ci ⊆ Cd for a drug d, we extract
the features corresponding to cell lines in Ci from Ω(d) and add them into the training data. After
extracting all compatible features from Ω, we train a decision tree for Ci. We repeat this process
for 3500 times, such that each combination of 4 cell lines have around 100 decision trees on average
(
(
7
4

)
= 35). To apply this two-level random forest to a test drug t with cell line profile Ct, we iterate

through these 3500 decision trees and test if Ci ⊆ Ct for a decision tree i. For the decision trees
that are compatible with drug t, we extract features corresponding to the cell lines in Ci from Ω(t)

and apply decision tree i to it. The final value for each gene is the average of all compatible decision
trees. Comparing to the “on-the-fly” method, the “two-level” method requires we train only once to
obtain a random forest that is compatible with all drugs in the dataset.

The performance of both methods are summarized in Table 6. The “On-the-fly” random forest
ranked the targets of 58 out of 152 drugs in the top 100 (38%), with 42 of them in top 50 (28%).
The “Two-level” random forest leads to even better performance. 64 drugs (42%) are successfully
classified in top 100 and 54 of them has targets ranked in top 50% (54%). We also compare these
results with a random classifier, for which we repeated the same procedure for 20000 times but with
randomly selected genes as drug targets. Figure 2 shows that the majority of these random trials
has success percentages of approximately 7% when we use top 100 as the criterion, which is much
worse than both methods. These encouraging result suggests that we can apply these two methods,
especially the “two-level” random forest, to any small molecules that were applied to any 4 cell lines
combinations in LINCS, and it is likely that we will enrich their correct targets to the top 100 list.

3.5 Gene Ontology Analysis of Targets

In the last stage of the project, we aim to investigate the biological differences between the correctly
and incorrectly classified drugs using our “two-level” random forest. We believe such characteriza-
tion can (1) reveal the scope of small molecules that our method is suitable for, and (2) give rise to
additional features that can easily be incorporated into our random forest model.

We group the drugs whose targets were ranked among top 100 from the “two-level” random forest
as “successful” (54 drugs total), and attempted to compare them with the rest of drugs, which were
considered as “unsuccessful”. To categorize these drug targets, we resorted to the Gene Ontology
Enrichment Analysis tool (see Data and Methods for detail). Given a set of genes, this tool can
find out which biological categories are over-represented (or under-represented). The tool supports
many biological categories, and we are especially interested in the results from the “cellular com-
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Figure 2: Comparing the random forest approaches with a random classifier. The red arrow indicates
the success rate of on-the-fly random forest and the green arrow represents the two-level random
forest.

Cellular Component p-value

Successful Targets

proteasome core complex 7.81E-37
proteasome complex 1.1E-28
proteasome alpha-subunit 5.68E-18
cytosol 7.53E-12
protein complex 1.88E-11

Failed Targets

transmembrane transporter complex 7.77E-15
sodium-exchanging ATPase complex 4.42E-14
cation-transporting ATPase complex 8.74E-13
plasma membrane part 2.19E-11
chloride channel complex 2.33E-9

Table 7: The cellular localization of successful and unsuccessful drug targets enriched by Gene
Ontology

ponent”, which compares the cellular localization between successful and failed targets. As shown
in Table7, the successful targets mostly belong to the proteasome-related cellular components and
they are intracellular. On the contrary, the failed targets are mostly associated with the transmem-
brane transporter complexes. This analysis reveals that our method tends to work with the drugs that
have targets internal to the cell, while those that failed tended to have targets on the cell membrane.
This observation is reasonable because the transmembrane targets are generally more difficult to
characterize in biological assays, and therefore, their signature profiles may contain more noises in
LINCS.

This findings motivate us to incorporate cellular component as an additional feature in our two-
level random forest. We encode this feature by assigning 1 to the intracelluar genes and -1 to the
extracellular ones (see Data and Methods for detail). We then run the two-level random forest again
with this additional feature included. The result shows that the cellular component further improves
the performance of two-level random forest. It increase the number of top 100 genes to 66 and top
50 genes to 55. The mean ranking is also improved significantly (from 718.2 to 615.3).

4 Discussion

In this project, we use the LINCS gene expression data and developed machine learning methods
for this target prediction problem. Based on the main hypothesis that the gene expression profile
of a drug-response experiment is correlated to that of the targets’ knockdown experiment, we ex-
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tracted the correlation feature from LINCS and integrate it with information from auxiliary datasets
(such as PPI and cellular localization). We demonstrate that the features have significant predicative
power and, when combined together in random forest models, they lead to remarkable prediction
performance. In addition, the gene ontology analysis suggests that our method performs better with
the intracellular targets.

It is still troublesome for a common laboratory to test all 100 proteins predicted from our approach.
However, our method can serve as a valuable pre-pruning step for the more accurate computational
structure based approaches that computationally dock the small molecule to the protein molecular
structure and compute the interaction energies. Since our method can enrich the correct targets into
the a 100 protein group, we need to perform much fewer docking experiments for the proteins in this
list. To this end, we have collaborated with Prof. Carlos Camacho at the University of Pittsburgh to
develop a pipeline to integrate our genomics-based predictions with detailed computational structure
analysis. The detail of this collaboration is beyond the scope of this report.

It is worth noting that the accuracy of our methods is most likely underestimated. It is not uncommon
for drugs to bind unintended “off-target” proteins in addition to their designed targets [1]. Therefore,
drugs may actually bind to the proteins in our top 100 predictions. This observation reveals the key
advantage of our methods when comparing to the conventional high-throughput screening (HTS).
HTS is performed in vitro. Although we can obtain information about whether small molecules can
bind to the protein, we do not know the behavior of small molecules in cell. LINCS experiments
were performed in vivo, so they provide information of drug activity in the cell and when combining
with structural approaches it also offer important insights on off-target interactions.

The Two-level random forest can be used on any small molecules in LINCS that have been to 4
or more cell lines in LINCS. We have identified 1598 such small molecules and completed the
prediction for all of them. We are collaborating with biologists to test our predictions in biological
assays.
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